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N is the number of possible off-centre positions. €, may be called the off-centre
displacement, but note that it does not necessarily describe a static displacement
of the defect ion.

Inserting (5), (7). and (8) into (6) we obtain for the oscillator strength

frisri(r) = Aie {9z K@i, + <Qi.)) + cyclic terms} +

+ A {1z (@iy0 + Qiz0) + cyclic terms} , (10)
frisry = A5 {(5:{Qi.) + cyclic terms} +
+ A3 {7z Qizo + cyclic terms} . (11)

Ay, Ay, and A, are constants, depending on the excited state of the transition.
0 = (34 My, 12) is the unit veetor of polarization. The first expression describes
transitions from a nondegenerated state /'] to the orbital triplet states I'y, I3,
the seccond one transitions to an orbital doublet state 7. The second term
represents the effect of the off-centre potential. Without stress the expressions
(10) and (11) are isotropic in the polarization, because the mean square ampli-
tudes of the lattice vibrations are equal in each direction:

kT
i N 5 s 5 for kI'>ho,
Qin=<@* = b coth 5EE =1 (12)
i
:2—; for kT< Vi w .

Inserting (12) into (10) and (11) we obtain the temperature dependence of the
oscillator strength [2].

Uniaxial stress lifts the degeneracy of the resonance mode and we get dif-
ferent vibrational frequencies and different off-centre distortions parallel and
perpendicular to the stress axis. As an example Fig. 4 shows the splitting of

NaCl:Cu”®
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Fig, 4. Stress splitting of the Joeal mode at 23.5 cm=? Vig. 5. Temperature dependence of the different effects
i NaCl:Cu* at 4.3 “K. The applied stress is 100kp/em? contributing to (/“ - /J_)/I
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